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Fluctuation-response relation for steady states

Marco Paniconi
Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260

~Received 31 July 1997; revised manuscript received 20 October 1997!

The fluctuation-response relation for Langevin dynamics in the small noise limit, recently introduced, is
generalized for the purpose of computing the fluctuation spectrum of a nonequilibrium system. The fluctuation-
response relation provides an efficient and operational means to compute the fluctuations around a nonequi-
librium steady state. As an example, we consider a model of a magnetic system driven away from~local!
equilibrium by an oscillating magnetic field. The generalized fluctuation-response relation is utilized to com-
pute the fluctuation spectrum of the driven system, which is shown to display some interesting behavior near
the transition region~where the system undergoes a transition from a nonzero to zerotime-averagedstate!.
@S1063-651X~98!10303-3#

PACS number~s!: 02.50.Ey, 05.20.2y, 05.40.1j
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I. INTRODUCTION

The fluctuation-response relation for systems in equi
rium @1# is the well-known statement that relates sponta
ous thermodynamic fluctuations to thermodynamic respon
~susceptibility!. The generalization of this relation to the fre
quency and wave vector domain is the equilibrium fluctu
tion dissipation theorem~FDT! @2,3#. The relation gives us a
means to obtain, e.g., the spectrum of an observable
particular frequency, by adding the appropriate conjug
force to the system Hamiltonian.

The computation of the fluctuation spectrum for noneq
librium steady states is, in contrast, a difficult task. Sin
‘‘Hamiltonians’’ for nonequilibrium steady states, even
they exist, are not known, there is no guiding principle th
tells us how to add appropriate perturbations to the system
would be desirable, and interesting in its own right, to hav
method to compute the fluctuation spectrum operation
via a linear response. From an experimental standpoint,
would make the determination of the fluctuation spectr
easily accessible.

In this paper, in the context of an arbitrary Langevin d
namics, we will discuss a generalized fluctuation respo
that provides an efficient and operational means to comp
the fluctuation spectrum of a nonequilibrium steady sta
Here, steady state implies any state whose long-time st
tics is meaningful. The fluctuation-response relation aroun
nonequilibrium steady state was introduced in@4# to compute
the fluctuations of time-averaged observables. In this pa
we extend the formalism to the frequency domain, and us
to compute the full fluctuation spectrum
@ŠuM (v)2^M (v)&u2‹, for some observableM (t)] of a peri-
odically driven system.

The system is a simple model of a magnetic system dri
away from local equilibrium by a~large! oscillating mag-
netic field. It was shown@5# to undergo a transition from a
state with a nonzero~NZ! time-averaged magnetization to
zero (Z) time-averaged magnetic state. The fluctuation sp
trum displays rather interesting and peculiar behavior n
the transition region that will be illustrated and discuss
below. The model system considered here is experimen
realizable. Therefore, the elucidation of a generaliz
fluctuation-response relation, and the results that follo
571063-651X/98/57~3!/2690~7!/$15.00
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should be of direct interest to experimentalists.
General relations between fluctuations and response f

tions for Markov processes have been studied in the p
@6,7#. However, without the condition of detailed balanc
the correct coupling of the forces to the system to elicit
correct response requires knowledge of the steady state
sure, which makes the approach not feasible in practice.
approach we discuss in this paper~introduced in@4#! is not
only operational, but practical. In contrast to the usual f
mulations of fluctuation response relations, we introduc
generalized fluctuation-response relation from the star
point of capturing~via a linear response function! the fluc-
tuations oftime-averagedobservables. The proper perturbin
force required to extract the fluctuation is explicitly realiz
as an external force in the dynamical model~Langevin equa-
tion!.

The paper is organized as follows. In the next section,
briefly introduce some necessary theoretical background
Sec. III, we discuss the generalized fluctuation-response
lation. The model system and the results are presente
Sec. IV, with a concluding discussion in Sec. V.

II. THEORY

Consider the class of stochastic processes describe
Langevin equations of the form

Ṁ i~ t !5bi~M ,t !1es i j ~M !h j~ t !, ~2.1!

wherei 51,2, . . . ,N are theN components of the stochast
vectorM (t) field, b(M ,t) a time-dependent~vector-valued!
function of M (t), s(M ) a ~matrix-valued! function, h(t) is
the zero mean Gaussian white noise with covaria
^h i(t)h j (s)&5d(t2s)d i j , and the parametere is the overall
strength of the noise. If the noise corresponds to fluctuati
from internal degrees of freedom, it typically scales~accord-
ing to the central limit theorem! ase2' 1/V, whereV is the
system size~or the total number of degrees of freedom!.
Hence for macroscopic systems the noise strength serves
natural small parameter.

The random process~2.1! has the following large devia
tion ~LD! @8–10# property for the trajectoriesM (t) in the
small noise limite→ 0,
2690 © 1998 The American Physical Society
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57 2691FLUCTUATION-RESPONSE RELATION FOR STEADY STATES
P„M ~ t !…;expS 2
1

e2
S„M ~ t !…D , ~2.2!

whereP„M (t)… is the probability of the trajectoryM (t), and
the ‘‘action functional’’ is given by

S~M ~ t !!5
1

2E (
i j

ai j @Ṁ i~ t !2bi„M ~ t !…#

3@Ṁ j~ t !2bj~M ~ t !…#dt, ~2.3!

with ai j 5((ks iks jk)21. Equation~2.2! is the generalization
@11# of the path probability functional for linear irreversib
processes close to global equilibrium, introduced by Has
sume@12#, and also by Onsager and Machlup@13#.

The generalized potentialI (y) ~rate function or entropy
functional! that quantifies the probability of a spontaneo
fluctuationy in the steady state is obtained, according to
contraction principle @8,9#, by minimizing the action
S„M (t)… over all pathsM (t) @ tP(2`,`)#, under the con-
straint of a fluctuationy at some timet50,

I 5 inf
M ~ t50!5y

S„M ~ t !…. ~2.4!

In this paper, we study the fluctuation of the amplitu
spectrum. Experimentally, the amplitude spectrumM (v) of
an observableM (t) is obtained through its Fourier transfo
mation:

M ~v!5
1

Tobs
E

0

Tobs
dtM~ t !exp~2 ivt !, ~2.5!

where Tobs is the observation time. Since our observati
time cannot be infinitely long,M (v) is still a fluctuating
quantity. We wish to study this fluctuation. The usual pow
spectrum isP(v)[^uM (v)u2&, where the average is ove
initial conditions. We are interested in the fluctuation, i.
the second moment quantity

QM~v!5ŠuM ~v!2^M ~v!&u2
‹

5^uM ~v!u2&2u^M ~v!&u2, ~2.6!

where ^ & implies the ensemble average over independ
samples. IfM (t) is strictly periodic, then̂ M (v)& vanishes
except for integer multiples of the basic frequency, so t
this fluctuation is the empirically obtained power spectru
Obtaining QM(v) for long time asymptotic behaviors ex
perimentally is not easy, because the fluctuations are sm
As is noted in@14#, it is very difficult to obtain accurate
second moments. Hence, the method we are proposing
could be practically meaningful~as a means to obtain th
Gaussian approximation of the rate functions in large de
tion theory!.

In order to study the quantity~2.6! we proceed as follows
The LD principle~2.2! will be used to characterize the fluc
tuations of time-averaged quantities. We introduce
Lagrange multiplier to minimize the action function
S„M (t)… under the time-average constraint. The Largran
multiplier will play the role of a generalized conjugate forc
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as in the usual equilibrium case. In Sec. III B we discuss h
to realize this force operationally as a perturbation on
system dynamics.

Consider the time average of an observablef „M (t)…,

f̄ 5
1

Tobs
E

0

Tobs
dt f„M ~ t !…. ~2.7!

The rate function for the quantityf̄ is given by, for suffi-
ciently largeTobs,

I ~ f̄ !5 lim
Tobs→`

1

Tobs
infS S„M ~ t !…1lE

0

Tobs
dt f„M ~ t !…D .

~2.8!

The rate function determines the asymptotic (e→0, Tobs

→`) behavior of the probability of the fluctuationf̄ ,

P~ f̄ !;expS 2
Tobs

e2
I ~ f̄ !D . ~2.9!

The quantityl in Eq. ~2.8! is the Lagrange multiplier tha
enforces the constraintf̄ . l may be interpreted as a conju
gate force in the sense that

l~ f̄ !52
]I ~ f̄ !

] f̄
, ~2.10!

and

dl

d f̄
U

f̄ 5 f 0
¯

52
]I ~ f̄ !

]2 f̄
U

f̄ 5 f 0
¯

52x21, ~2.11!

where f 0̄ is the most probable value off̄ . The quantityx is
the susceptibility that characterizes, at the quadratic le
the fluctuation about the most probable state.

The computation of the generalized entropyI for a fluc-
tuation f̄ involves minimizing the actionS„M (t)… over all
pathsM (t) under the constraintf „M (t)…5 f̄ . The optimal
path~or path of least action! for a givenl satisfies, as can be
seen from Eq.~2.8!, the Euler-Lagrange equation

d

dt
] ṀL5]ML, ~2.12!

where

L5
1

2(i j ai j @Ṁ i~ t !2bi„M ~ t !…#@Ṁ j~ t !2bj„M ~ t !…#

1l f „M ~ t !…. ~2.13!

III. GENERALIZED FLUCTUATION-RESPONSE
RELATION

A. Preliminary comments

The generalization of the equilibrium fluctuation-respon
relation to frequency~and spatial! perturbations is the usua
equilibrium FDT @2,3#. The theorem tells us that



n
he

of

lib

-

or

n
e

e
y

-
e
o

us
e
e

ex

-
.
e

pl

r
a-
r

e
ith-
ere
the

l

ys-
after

cep-
di-

-
we
to

ic,
d
n-
for

ot

ion

eed

s

2692 57MARCO PANICONI
kBT5vS~k,v!/@2 Im Re~k,v!#, ~3.1!

where Re(k,v) is the response function, with the compone
v Im R(k,v) proportional to the dissipation generated in t
system. The structure factorS(k,v) is equal toŠuM (k,v)
2^M (k,v)&u2‹ @i.e., the space-time Fourier transform
^M (x,t)M (x8,t8)&2^M (x,t)&^M (x8,t8)&] for space and
time translationally invariant systems, such as the equi
rium state.

Note that in the limitv→0, S(k,v) measures the fluc
tuation of the long-time average,

M ~k,0!5 lim
Tobs→`

1

Tobs
E

0

Tobs
dtM~k,t !. ~3.2!

However, the FDT relation is not defined in this limit. F
v50, the response probes only the fluctuations ofsingle-
timeobservables~by single-time observable we mean an~en-
semble or space averaged! observable evaluated at a give
instant of time!. This is the equilibrium fluctuation-respons
relation

kBT5S~k,t50!/Re~k,0!, ~3.3!

where S(k,t50)5*dvS(k,v) for time-translationally-
invariant systems. Thus the appropriate response to prob
fluctuations oftime-averagedobservables is not obtained b
the usual coupling in the~equilibrium! Hamiltonian that is
used to obtainS(k,v) for vÞ0. However, this is a conse
quence of an obvious fact that the fluctuations of tim
averaged quantities are distinct from the fluctuations
single-time~ensemble averaged! quantities@4#. The discrep-
ancy between the two averaging methods is simply beca
while the ensemble average is strictly over independ
samples, time averages of a single sample crucially dep
on the time correlation. We can illustrate this in the cont
of the rate function as follows.

Consider the fluctuation of the quantity

x̄ 5
1

Tobs
E

0

Tobs
dtx~ t ! ~3.4!

in the steady state, wherex(t) may represent the spatial av
erage~over sample sizeV) at time t of some observable
Asymptotically, the fluctuationx̄ decays according to th
LD principle @14#,

P~ x̄ !;expS 2
VTobs

2x
~ x̄ !2D . ~3.5!

We have for the susceptibilityx,

x5
V

Tobs
E

0

TobsE
0

Tobs
dtdŝ x~ t !x~s!& ~3.6!

52VE
0

Tobs
dt^x~ t !x~0!& ~3.7!

for a time-translationally-invariant steady state. For a sim
exponential decayx(t)5x(0)exp(2t/t) ~away from critical
points! we have that
t

-

the

-
f

e,
nt
nd
t

e

x52tV^x2~0!&52tx th . ~3.8!

For notational simplicity we assumêx&50. The quantity
x th5V^x2& is the usual thermodynamic susceptibility fo
ensemble-~space-! averaged observables. Thus the fluctu
tions ~susceptibility! of a long-time averaged quantity pe
23correlation timeunit is equal to the susceptibility of th
~single-time! ensemble averaged quantity. For systems w
out time-translational symmetry, which are the cases wh
time averaging may be a better method to characterize
system behavior phenomenologically~such as the mode
considered in this work!, the relationx52tx th is, strictly
speaking, not valid. However, one still expects thatx'tx th .
Such a relation is natural since the configurations of the s
tem generated along the time axis become independent
a time separationt.

Note that close to a critical point, botht andx th diverge.
Hence, near a phase transition the divergence of the sus
tibility for space-time–averaged quantities has a stronger
vergence than that of ensemble-averaged quantities.

B. Fluctuation-response relation

In a previous paper@4#, we discussed the fluctuation
response relation for time-averaged observables. Here
point out the extension of the fluctuation-response relation
compute, operationally,QM in Eq. ~2.6!. As mentioned
above, if the system under consideration is strictly period
then QM(v) becomes identical to the empirically obtaine
power spectrum, except for the integer multiples of the fu
damental frequency of the system. We note here that
time-dependent steady states~i.e., steady states that are n
time-translationally invariant!, the quantityQM is the Fourier
transform of the time-averaged time-displaced correlat
function C(t), where

C~t!5
1

Tobs
E

0

Tobs
dtŠ@M ~ t1t!M ~ t !2^M ~ t1t!&^M ~ t !&#‹.

~3.9!

To establish the fluctuation-response relation, we proc
as follows. For the general model~2.1!, the Euler-Lagrange
equations~2.12! can be written as follows:

ak j

d

dt
~Ṁ j2bj !52ai j ~Ṁ i2bi !

]bj

]Mk
1l]Mk

f ~M !,

~3.10!

whereai j 5((ks iks jk)21. One can rewrite the equations a
two first-order equations

Ṁ i5bi~M ,t !1lai j
21gj , ~3.11!

with the forceg(t) obeying the equation

ġi52gj

]bi

]M j
1]Mi

f . ~3.12!

We consider the simple case of ascalarfield M and drift
b(M ,t), and additive noise witha51, as in our example
system discussed in Sec. IV. Thus we have
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57 2693FLUCTUATION-RESPONSE RELATION FOR STEADY STATES
Ṁ5b~M ,t !1lg, ~3.13!

ġ52g]Mb~M ,t !1]M f . ~3.14!

Now let us consider the fluctuation of the following quant
for large, but finite, observation timeTobs,

M ~v!5
1

Tobs
E

0

Tobs
dtexp~ ivt !M ~ t !. ~3.15!

We define the real and imaginary components ofM (v) as

MR~v!5
1

Tobs
E

0

Tobs
dtcos~vt !M ~ t !, ~3.16!

MI~v!5
1

Tobs
E

0

Tobs
dtsin~vt !M ~ t !. ~3.17!

In order to realize the fluctuations of the real and imagin
components operationally, we denote for f
5cos(vt)M(t)@sin(vt)M(t)#, the corresponding perturbin
forces asl1g1(t) @l2g2(t)#.

The fluctuation-response relation is realized once we
gard the forcelg(t) as the external force we experimenta
impose to the system to realize the fluctuation~deviation!.
The linear response about the steady state@denoted asM0(t),
whereṀ0(t)5b„M0(t),t…] is the response of the system
the limit l→0. In this limit, one may linearize the equation
to obtain for the forces

ġ1~ t !52b8„M0~ t !,t…g1~ t !1cos~vt !, ~3.18!

ġ2~ t !52b8„M0~ t !,t…g2~ t !1sin~vt !, ~3.19!

whereb85]b/]M0 . From the definition ofl as the ‘‘con-
jugate’’ force in Eqs.~2.10! and ~2.11!, we have that the
susceptibilities Š@MR(v)2^MR(v)&#2

‹, Š@MI(v)
2^MI(v)&#2

‹, are given by the linear responses

Š@MR~v!2^MR~v!&#2
‹5x252 lim

l1→0
S DMR~v!

l1
D

l250

,

~3.20!

Š@MI~v!2^MI~v!&#2
‹5x152 lim

l2→0
S DMI~v!

l2
D

l150

.

~3.21!

The subscript on the quantityx is to remind us that the
response is computed~operationally! by perturbing the sys-
tem with forcesg1(t) @g2(t) absent, i.e.,l250] or g2(t)
(l150).

Since the equations governing the response are linear
may use the superposition principle and consider the sys
response to one~complex! force g(t)5g11 ig2,

ġ~ t !52b8„M0~ t !,t…g~ t !1cos~vt !1 i sin~vt !,
~3.22!

DṀ ~ t !5b8„M0~ t !,t…DM1lg~ t !, ~3.23!
y

-

we
m

where the complex response isDM (t)5DM1(t)1 iDM2(t).
The fluctuation response can then be simply written as

QM~v!5ŠuM ~v!2^M ~v!&u2
‹5R̃~v!, ~3.24!

where

R̃~v!52 lim
l→0

DM1R~v!1DM2I~v!

l
. ~3.25!

DM1R(v) @DM2I(v)# are the cos(vt) @sin(vt)# transform
@i.e., Eqs.~3.16!,~3.17!# of DM1(t) @DM2(t)#, respectively.
Note that we have scaled out the factor of the noise stren
and averaging time in Eq.~3.24!. Otherwise the relation
should read@from the LD formula~2.9!#

QM~v!5
e2

Tobs
R̃~v!;

1

VTobs
R̃~v!, ~3.26!

where for macroscopic systemse2; 1/V (V is the system
size!.

The fluctuation-response relation requires one to app
force g(t) that, in general, is a function of the steady sta
M0(t). The ~experimental! determination ofg(t) was dis-
cussed and demonstrated in@4#. First, we must determineb8
by observing the natural relaxation of the system to
steady state. Next, we must solve Eq.~3.14! @linearized about
M0(t)] for g(t). Here we note that since Eq.~3.14! is un-
stable~because of the negative sign in the linear term!, the
best method to computeg(t) is to solve the~stable! time-
reversed equation

ġ8~ t !5b8„M0~2t !,2t…g82]Mo~2t ! f „M0~2t !,2t…,
~3.27!

where g85g(2t), and then time reverse the steady sta
solution back to obtaing(t).

The above prescription allows one to compute the gen
alized fluctuational entropy functionI „MR(v),MI(v)… at the
quadratic level,

I ~MR ,MI !5MR
2~v!/2x I1MI

2~v!/2xR1MR~v!MI~v!/x.
~3.28!

The susceptibilities,x I ,R ,x, are determined asx I ,R5

(2 x̄ 21x1x2)/x2,1, andx5( x̄ 22x1x2)/ x̄ . The quantityx̄
is the response function

x̄ 52 lim
l→0

DM2R~v!

l
52 lim

l→0

DM1I~v!

l
. ~3.29!

The relation between the two sets of susceptibilities@and Eq.
~3.29!# follows from the Legendre transform and integrab
ity conditions of the rate functionI .

The generalized fluctuation-response relation~3.24! is
constructed from the starting point of capturing the fluctu
tions of time-averaged quantities (v50), and then general
izing to nonzerov, whereas the usual equilibrium FDT be
gins with the single-time simultaneous correlations (t50,
*dv), and then generalizes to the cases with time de
~consequently, to nonzerov). For steady states that are tim
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2694 57MARCO PANICONI
translationally invariant, the single-time fluctuation can
obtained from our response theory, by using the relation

Š@M ~ t50!2^M &#2
‹5E dvR̃~v!. ~3.30!

This means that the forcing term in the linear equation
the perturbing forceg(t) becomes*dv@cos(vt)1i sin(vt)#
5d(t). Thus, for single-time fluctuations, the forceg(t) is
obtained via the equation

ġ~ t !52b8„M0~ t !…g~ t !1d~ t50!, ~3.31!

which, as discussed in@4#, must be solved fromt52` up to
t50, with g(t)50 for t.0.

IV. EXAMPLE SYSTEM AND RESULTS

A. Model system

As an illustration of the generalized fluctuation-respon
relation, we consider, as an example, a simple model o
magnetic spin system under the influence of a tim
dependent magnetic field@5#. The system was modeled ph
nomenologically using a time-dependent Ginzburg-Land
equation for the dynamics of the spatially coarse-grain
magnetization. We study the model at the mean-field le
but with a small noise~more realistically, the total magnet
zation of a small magnetic particle under constant temp
ture condition!. The model takes the following form:

Ṁ ~ t !52g0@2r 0M ~ t !1u0M3~ t !2h0cos~vot !#1eh~ t !,
~4.1!

where the fieldM (t) denotes the~space-averaged! magneti-
zation,h(t)5h0cos(v0t) is the external magnetic field,u0 is
a positive constant,g0 is the kinetic coefficient, andr 0 is the
temperature parameter@proportional to (Tc2T) with Tc be-
ing the unrenormalized critical temperature, ifT is close to
Tc ; constant ifT is sufficiently away fromTc]. In the fol-
lowing we rescale the fieldM and time to express the dy
namics in terms of the minimal set of paramete
r 5r 0g0 /v0 , h5h0(u0g0

3/v0
3)1/2, e→e(u0g0 /v0

3)1/2:

Ṁ5rM 2M31h cos~ t !1eh~ t !. ~4.2!

In the zero noise limit, the steady states of the system
periodic in frequencyv0 . The system undergoes a pha
transition at a critical fieldhc(r ) from a zero time-average
magnetization phase (Z phase! to a nonzero time-average
magnetization phase~NZ phase!. The transition between th
Z and the NZ phases is acontinuoustransition. Forr ,0
~i.e., T.Tc) there is only theZ phase.

Although we study the system at the mean-field level,
expect that in the actual spatially extended system~i.e., in-
cluding spatial fluctuations! there will be a true phase tran
sition from a NZ to aZ phase. It is in this sense that we u
the term ‘‘phase transition’’ for the mean-field system~4.2!.
However, it should be noted that if one studies the sys
along the time axis, there is a phase transition for the me
field system~4.2! in the sense that the generalized poten
@4# that describes the fluctuations of time-averaged obs
r

e
a
-

u
d
l,

a-

,

re

e

m
n-
l
v-

ables in the steady state becomes flat at the transition@i.e.,
the fluctuations of time-averaged quantities become la
~diverge! near the transition#.

B. Results

The fluctuation spectrum was computed for various fi
h values at a generic pointr 51 ~wherehc'0.93), using the
response method discussed above. Along with the linear
sponse data, we also show some data obtained empiric
from a numerical simulation of the stochastic equation~4.2!
with e50.01, and an averaging timeTobs510 ~in units of the
period of the external magnetic field, 2p/v0). The empirical
data are shown to illustrate that the zero-noise data obta
from the linear response method are reasonably robus
small noise.

The quantityQM(v) for a typical parameter point in the
NZ phase~away from the transition region! is shown in Fig.
1~a!. One sees a Lorentzian-type shape centered aro
v50, with a well-defined characteristic time scalet ~de-
fined as the inverse half-width!. t is a measure of the time
correlation, or relaxation time, of the steady state. Charac
istic of a typical second-order phase transition, the quantitt

FIG. 1. The fluctuation spectrum as a function ofv for various
field h values, atr 51, andv051. The star symbols denote th

linear response data@R̃(v)#, the circle symbols denote the empir
cal data obtained from a numerical simulation of Eq.~4.2! with
e50.01,Tobs520p/v0 .
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57 2695FLUCTUATION-RESPONSE RELATION FOR STEADY STATES
@along with thev50 peak, i.e., the susceptibility of the lon

time-averaged quantityM̄5(1/Tobs)*dtM(t)], diverges as
h→hc'0.93. In Fig. 1~a!, t'1 ~in units of the period of the
external magnetic field 2p/v0). Note that, in principle, the
averaging timeTobs for the empirical data should be large
than t. This is to ensure that one is properly sampling
ensembleof time averages. In practice, the averaging time
10 periods is sufficient, if we are not too close to the tran
tion.

As the fieldh is increased closer to the transition~from
the NZ phase!, peaks develop in the fluctuation spectrum
thev5nv0 (n51,2, . . . ),wherev0 is the frequency of the
external oscillating magnetic field. The caseh50.9 is shown
in Fig. 1~b!, where, as expected, thev50 peak increases an
the width of thev50 peak decreases~there is still a well-
defined peak atv50 ~not shown in the figure! with t'5.
The peaks atnv0 grow to a maximum at the transition. Th
strongest peaks (n50,2) do seem to diverge ash→hc ~the
peaks at the higher harmonics are much smaller in si!.
Above the transition (h.hc), the odd harmonics disappea
quite abruptly; the peaks at the even harmon
(n52,4, . . . )persist above the transition, but eventually d
appear@see Fig. 1~c!, for h51].

The empirical data illustrate that these features near
transition are reasonably robust to the effect of nonz
noise. Above the transition, the data from the system w
noise show the same trend, except that the noise tend
reduce the peaks at the even harmonics, to the extent tha
narrow peaks become dips. We note here that from the s
ing of the noise strength@e2;1/v0

3, see above Eq.~4.2!#,
one expects the small noise theory to become even m
accurate for largerv0 ~the regime of largerv0 is actually of
more intrinsic interest, since for largev0 the system canno
locally equilibrate over the time scale of the external fie
and thus is further away from local equilibrium!.

Shneidmanet al. @15# have studied the small noise beha
ior of QM(v) for this system analytically, starting from
two-state rate equation with an approximate form for
transition probability. They observed peaks in theevenhar-
monics in the small noise limit, for frequencies much sma
than the one used in Fig. 1. It is interesting that some of
above features have been observed in@15#, since the regime
they studied is quite different from that studied in this pap

Near the transition, the system has excitable modes a
harmonics, which is essentially a reflection of the discr
time symmetry of the system, i.e., the symmetry of the s
tem is reflected on the response. One expects that close t
phase transition, the system becomes more susceptib
perturbations that are periodic inv0 . The peaks observed i
the spectrum are simply due to large periodic driving. Th
peaks are not related to the phenomenon of stochastic r
nance, which is a synchronization of the noise-induced h
ping with the external oscillating field~the stochastic reso
nance would presumably only be observable in our sm
noise system for sufficiently smallv0 and h!r , i.e., well
away from the transition region!.

The fluctuation-response method also allows one to c
pute, separately, the two components ofQM(v):

QMR
~v!5Š@MR~v!2^MR~v!&#2

‹, ~4.3!
n
f
i-

t

s
-

e
o
h
to

the
al-

re

,

e

r
e

r.
he
e
-
the
to

e
so-
p-

ll

-

and

QMI
~v!5Š@MI~v!2^MI~v!&#2

‹, ~4.4!

via the linear response~3.20!, ~3.21!. An example is shown
in Fig. 2. The two components are the same@i.e.,
uQMR

(v)2QMI
(v)u50], except at the harmonicsnv0 @and

at (n11/2)v0 in the NZ phase#, where one component dips
and the other peaks~which component peaks or dips varie
with h and n). Similar behavior is seen close to the tran
tion, except very close tohc , where both components sho
peaks at the harmonics. The empirical data ate50.01 show
basically the same behavior.

An interesting finding is the nonzero nature

uQMR
(v)2QMI

(v)u at v5(n1 1
2 )v0 (n51,2, . . . ) in the

NZ phase~it is zero in theZ phase!. The difference between
the two components seems to decrease smoothly to ze
the transition. Thus the quantity uQMR

(v)

2QMI
(v)uv5(n11/2)v0

~for n50 in particular! is a good in-

dicator of the phase transition from NZ to theZ phase. As
mentioned in Sec. IV A, the typical~usual! order parameter
that characterizes the phase diagram for the periodic ste
states is the time-averaged magnetizationM̄5M (v50).
Here we see that the phase transition@M̄50 (Z phase!

FIG. 2. The two componentsQMR
(v) ~star symbol! and

QMI
(v) ~circle symbol! of the fluctuation spectrum, obtained wit

the linear response method~for r 51,v051.)



n

th
ys
ef
th
ti
a
th
p

m
y

u
na
th

ha

tw

n

o
ha
e
ld

ne

i

ery

for
est
ib-

am-

on

tside
he

s
r-

lly
r

e

is a
een
e

ble
the
o be
n-
the

per.

a-
8.

2696 57MARCO PANICONI
→M̄Þ0 ~NZ phase!# is reflected in the response functio
uQMR

(v)2QMI
(v)uv5(1/2)v0

. The periodic symmetry with

frequencyv0 of the response functionuQMR
(v)2QMI

(v)u
is broken in the NZ phase; there is a period doubling~i.e., the
response becomes nonzero at1

2 v0).

V. DISCUSSION

We have discussed and illustrated the computation of
fluctuation spectrum for a nonequilibrium steady-state s
tem via a linear-response method. The method gives an
cient and operational means to compute the fluctuation of
amplitude spectrum for nontrivial steady states. The quan
can give more insight into the dynamics of the system th
the power spectrum, but it is not easy to observe without
use of the fluctuation-response relation discussed in this
per. As an illustration a periodically driven bistable syste
or driven magnetic system~that should be experimentall
realizable!, has been considered.

The system was shown to display, in addition to the us
peak atv50, narrow peaks at the harmonics of the exter
driving frequency near the transition point. The peaks at
even harmonics seem to be more dominant~namely, the sec-
ond harmonic!, and persist somewhat longer in theZ phase.
In the NZ phase, well below the transition, the spectrum
a Lorentzian-type shape aroundv50. Interesting behavior
has also been observed in the fluctuation spectrum of
components,MR(v) and MI(v); in particular, a symmetry
breaking ~for h,hc) reflected in the response functio
uQMR

(v)2QMI
(v)uv5(n11/2)v0

has been observed.
So long as the perturbation is small~i.e., linear regime!

the framework should be valid even if one is very close t
phase transition. If there is a disagreement, it is simply t
the applied perturbation is too large. Of course, gentle p
turbation is required near a critical point. However, it shou
be noted that the linear-response method is strictly confi
to systems in the small noise limite→0. Critical behavior
near a phase transition invalidates the small noise lim
Thus, in an actual system~experiment!, we would expect the
e
-
fi-
e

ty
n
e
a-
,

al
l
e

s

o

a
t

r-

d

t.

response method to give only qualitatively correct data v
close to the phase transition.

The fluctuation-response relation has been elucidated
small noise Langevin equations. The relation is of inter
for physical systems that are driven away from local equil
rium ~modeled at the mesoscopic level!. For nonequilibrium
Langevin models, the noise strength is an unknown par
eter in the theory. For our simple model system~4.1!, the
local equilibrium assumption~in the limit of small h0 and
v0) allows us to make the identificatione252g0kBT/V,
whereT is the equilibrium temperature, andkB the Boltz-
mann constant. Away from local equilibrium, such a relati
is invalid. However, the fluctuation-response relation~3.26!
may be used to define the noise strength for systems ou
of local equilibrium, if the experimentalist can determine t
fluctuation spectrumQM(v) in an independent fashion~by
some scattering experiment!, or perhaps one compute
QM(v) directly from a more microscopic model. To dete
mine the force coupling, and henceR̃(v), one needs to know
b8 ~i.e., the dynamical model must be given experimenta
or theoretically!. This is analogous to knowing the model o
effective Hamiltonian for an equilibrium system. Thecon-

stantratio TobsQM(v)/R̃(v) would then be a measure of th
noise strength~or generalized temperature!.

Finally, the example system considered in this paper
one-degree-of-freedom Langevin equation. As can be s
from Eq. ~3.12! in Sec. III B, the structure of the respons
theory is basically the same for the case of multivaria
dynamics. It should be noted that a difference arises for
case of a nondiagonal noise matrix. Such cases remain t
studied further. In particular, it would be interesting to co
sider as a future work a two-component system, where
fluctuation spectrum around~say! a limit cycle can be stud-
ied from the linear response method discussed in this pa
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