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Fluctuation-response relation for steady states
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The fluctuation-response relation for Langevin dynamics in the small noise limit, recently introduced, is
generalized for the purpose of computing the fluctuation spectrum of a nonequilibrium system. The fluctuation-
response relation provides an efficient and operational means to compute the fluctuations around a nonequi-
librium steady state. As an example, we consider a model of a magnetic system driven awajofaim
equilibrium by an oscillating magnetic field. The generalized fluctuation-response relation is utilized to com-
pute the fluctuation spectrum of the driven system, which is shown to display some interesting behavior near
the transition regioriwhere the system undergoes a transition from a nonzero totzeesaveragedstate.
[S1063-651%98)10303-3
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[. INTRODUCTION should be of direct interest to experimentalists.
General relations between fluctuations and response func-

The fluctuation-response relation for systems in equilib-tions for Markov processes have been studied in the past
rium [1] is the well-known statement that relates spontanel6,7]. However, without the condition of detailed balance,
ous thermodynamic fluctuations to thermodynamic responsé§e correct coupling of the forces to the system to elicit the
(susceptibility. The generalization of this relation to the fre- correct response requires knowledge of the steady state mea-
quency and wave vector domain is the equilibrium fluctua-Sure, which makes the approach not feasible in practice. The
tion dissipation theorertFDT) [2,3]. The relation gives us a approach we discuss in this pagértroduced in[4]) is not
means to obtain, e.g., the spectrum of an observable at @y operational, but practical. In contrast to the usual for-
particular frequency, by adding the appropriate Conjugaténulations of fluctuation response relations, we introduce a
force to the system Hamiltonian. generalized fluctuation-response relation from the starting

The computation of the fluctuation spectrum for nonequi-Point of capturing(via a linear response functiphe fluc-
librium steady states is, in contrast, a difficult task. Sincefuations oftime-averagedbservables. The proper perturbing
“Hamiltonians” for nonequilibrium steady states, even if force required to extract the fluctuation is explicitly realized
they exist, are not known, there is no guiding principle thatas an external force in the dynamical modedngevin equa-
tells us how to add appropriate perturbations to the system. H{on).
would be desirable, and interesting in its own right, to have a The paper is organized as follows. In the next section, we
method to compute the fluctuation spectrum operationallyriefly introduce some necessary theoretical background. In
via a linear response. From an experimental standpoint, thi§€c. Ill, we discuss the generalized fluctuation-response re-
would make the determination of the fluctuation spectrunfation. The model system and the results are presented in

easily accessible. Sec. IV, with a concluding discussion in Sec. V.
In this paper, in the context of an arbitrary Langevin dy-
namics, we will discuss a generalized fluctuation response Il. THEORY

that provides an efficient and operational means to compute . ) )

the fluctuation spectrum of a nonequilibrium steady state, Consider the class of stochastic processes described by
Here, steady state implies any state whose long-time stati¢-2ngevin equations of the form

tics is meaningful. The fluctuation-response relation around a .

nonequilibrium steady state was introduce@4hto compute M;(t) =b;(M,t) + €aj;(M) 7;(1), (2.9

the fluctuations of time-averaged observables. In this paper

we extend the formalism to the frequency domain, and use herei=1,2, ... N are theN components of the stochastic

to compute the full fluctuation spectrum vector M (t) field, b(M,t) a time-dependentvector-valued
[(M(w)—(M(w))|?), for some observabl# (t)] of a peri-  function of M(t), o(M) a (matrix-valued function, 5(t) is
odically driven system. the zero mean Gaussian white noise with covariance

The system is a simple model of a magnetic system drivefi#;(t) 7;(s)) = 8(t—s) &;; , and the parameteris the overall
away from local equilibrium by dlarge) oscillating mag-  strength of the noise. If the noise corresponds to fluctuations
netic field. It was shown5] to undergo a transition from a from internal degrees of freedom, it typically scalescord-
state with a nonzeréNZ) time-averaged magnetization to a ing to the central limit theorejras e~ 1V, whereV is the
zero () time-averaged magnetic state. The fluctuation specsystem size(or the total number of degrees of freedom
trum displays rather interesting and peculiar behavior neaklence for macroscopic systems the noise strength serves as a
the transition region that will be illustrated and discussednatural small parameter.
below. The model system considered here is experimentally The random proces®.1) has the following large devia-
realizable. Therefore, the elucidation of a generalizedion (LD) [8—10] property for the trajectorieM(t) in the
fluctuation-response relation, and the results that followsmall noise limite— 0O,
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as in the usual equilibrium case. In Sec. lll B we discuss how
, (2.2  to realize this force operationally as a perturbation on the
system dynamics.
Consider the time average of an observat{d (t)),

1
P(M(t))~exp( - ?S(M(t))

whereP(M(t)) is the probability of the trajectori (t), and
the “action functional” is given by

JR— 1 Tobs
=T—J dtf(M(t)). 2.7
1 _ obs/ 0
SM()=5 | 2 a;[M;()—b(M(1))]
2 1]

The rate function for the quantity_is given by, for suffi-

) ciently largeT gy,
X[M;(t)—b;(M(1))]dt, 23 Y Iarg8 o

—_— . 1 . Tobs
with a;; = (Syokoy) L. Equation(2.2) is the generalization I(f)=lim b'”f(S(M(t))JF)\fO dtf(M(t)))-
[11] of the path probability functional for linear irreversible Tops—2 " 0P8 2.8
processes close to global equilibrium, introduced by Hashit- '

sume[12], and also by Onsager and MachILis]. The rate function determines the asymptotie—0, Tgps
The generalized potentia(y) (rate function or entropy —o0) behavior of the probability of the fluctuatioh,
functiona) that quantifies the probability of a spontaneous '

fluctuationy in the steady state is obtained, according to the T
contraction principle [8,9], by minimizing the action p(f_)~exp( - Obs|(f_)>_
S(M(t)) over all pathsM(t) [te (—<,>)], under the con-

straint of a fluctuatiory at some time=0,

(2.9

62

The quantityn in Eqi2.8) is the Lagrange multiplier that

I= inf S(M(t)). (2.9 enforces the constraint. A may be interpreted as a conju-
M(t=0)=y gate force in the sense that
In this paper, we study the fluctuation of the amplitude L &I(f_)
spectrum. Experimentally, the amplitude spectiMifiw) of Nf)y=——, (2.10
an observablé/ (t) is obtained through its Fourier transfor- af
mation:
and
M ()= — JTObsdtM(t) A —iwt) 2.5 d\ ()
w)=— exp(—iwt), . -
Tobs) 0 # =-— Fra =—x1% (2.11)

f=f =f

where T,,s IS the observation time. Since our observation ° °

time cannot be |nf|n|t8|y IOngM(w) is still a ﬂUCtuating Wherems the most probab|e value dTThe quan“tyx is
quantity. We wish to study this fluctuation. The usual powerthe susceptibility that characterizes, at the quadratic level,
spectrum isP(w)=(|M(w)|?), where the average is over the fluctuation about the most probable state.

initial conditions. We are interested in the ﬂuctuation, i.e., The Computa’[ion of the genera”zed entrdptor a fluc-

the second moment quantity tuation f involves minimizing the actior§(M(t)) over all

=M (M 2 pathsM(t) under the constrainf(M(t))=f. The optimal
Qu(@)=(M(w)=(M(w))[%) path(or path of least actigrfor a given\ satisfies, as can be
=(IM()|)=|{M(w))|?, (2.6)  seen from Eq(2.8), the Euler-Lagrange equation

where( ) implies the ensemble average over independent Eﬁ_ L=gul (2.12
samples. IfM(t) is strictly periodic, thenlM (w)) vanishes dt M- OME :
except for integer multiples of the basic frequency, so that

this fluctuation is the empirically obtained power spectrum.where

Obtaining Qu(w) for long time asymptotic behaviors ex- 1

perimentally is not easy, because the fluctuations are small. _= CIN () N

As is noted in[14], it is very difficult to obtain accurate L 2% i [Mi(1) = bi(M(D)IIM; (1) = b (M(1)]
second moments. Hence, the method we are proposing here

could be practically meaningfulas a means to obtain the +AF(M(1)). (213
Gaussian approximation of the rate functions in large devia-
tion theory. Ill. GENERALIZED FLUCTUATION-RESPONSE

In order to study the quantit§2.6) we proceed as follows. RELATION

The LD principle(2.2) will be used to characterize the fluc-
tuations of time-averaged quantities. We introduce a
Lagrange multiplier to minimize the action functional  The generalization of the equilibrium fluctuation-response
S(M(t)) under the time-average constraint. The Largrangeelation to frequencyand spatial perturbations is the usual
multiplier will play the role of a generalized conjugate force, equilibrium FDT[2,3]. The theorem tells us that

A. Preliminary comments
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ksT=wS(k,w)/[2 Im Rek, )], (3.0 x=27V(x3(0))=27xy. (3.9

where Rek, ) is the response function, with the componentFor notational simplicity we assumg)=0. The quantity

o Im R(k,w) proportional to the dissipation generated in the y,, =V(x?) is the usual thermodynamic susceptibility for
system. The structure fact@(k,w) is equal to{|M(k,0)  ensemble{space} averaged observables. Thus the fluctua-
—(M(k,w))|?) [i.e., the space-time Fourier transform of tions (susceptibility of a long-time averaged quantity per
(M(X, )M (X", t")) —(M(x,t))(M(x',t"))] for space and 2xcorrelation timeunit is equal to the susceptibility of the
time translationally invariant systems, such as the equilib{single-tim¢ ensemble averaged quantity. For systems with-

rium state. out time-translational symmetry, which are the cases where
Note that in the limitw—0, S(k,w) measures the fluc- time averaging may be a better method to characterize the
tuation of the long-time average, system behavior phenomenologicalfguch as the model
considered in this wopk the relationy=27yy, is, strictly
M(K0)= lim 1 JTObsdtM(k,t). (3.7  speaking, not valid. However, one still expects that .
Ty 1 obs) 0 Such a relation is natural since the configurations of the sys-

tem generated along the time axis become independent after
However, the FDT relation is not defined in this limit. For a time separation.
=0, the response probes only the fluctuationssiofigle- Note that close to a critical point, bothand yy, diverge.
time observablegby single-time observable we mean@m-  Hence, near a phase transition the divergence of the suscep-
semble or space averagembservable evaluated at a given tibility for space-time—averaged quantities has a stronger di-
instant of time. This is the equilibrium fluctuation-response vergence than that of ensemble-averaged quantities.
relation

keT=S(k,t=0)/Re(k.0), 3.3 B. Fluctuation-response relation
In a previous papef4], we discussed the fluctuation-
where S(k,t=0)=fdwS(k,w) for time-translationally- response relation for time-averaged observables. Here we
invariant systems. Thus the appropriate response to probe tipeint out the extension of the fluctuation-response relation to
fluctuations oftime-averagedbservables is not obtained by compute, operationallyQ,, in Eq. (2.6). As mentioned
the usual coupling in théequilibrium) Hamiltonian that is above, if the system under consideration is strictly periodic,
used to obtairS(k,w) for w#0. However, this is a conse- then Qy(w) becomes identical to the empirically obtained
guence of an obvious fact that the fluctuations of time-power spectrum, except for the integer multiples of the fun-
averaged quantities are distinct from the fluctuations ofdamental frequency of the system. We note here that for
single-time(ensemble averaggduantities/4]. The discrep- time-dependent steady staté®., steady states that are not
ancy between the two averaging methods is simply becauséme-translationally invariantthe quantityQy, is the Fourier
while the ensemble average is strictly over independentransform of the time-averaged time-displaced correlation
samples, time averages of a single sample crucially depenf@énction C(7), where
on the time correlation. We can illustrate this in the context

of the rate function as follows. 1 (Tobs
Consider the fluctuation of the quantity C(n)= TobJO di[M(t+ M) —(M(t+7))(M(1))]).
X= JTobSdt t 3.4 9
= Tobs/ 0 X 39 To establish the fluctuation-response relation, we proceed

as follows. For the general modé.1), the Euler-Lagrange
in the steady state, whewgt) may represent the spatial av- equationg2.12 can be written as follows:
erage(over sample siz&/) at timet of some observable.

Asymptotically, the fluctuationx decays according to the E N MY A (N db;
LD principle [14], aj g7 (Mj—bj) = —ai(M; bn)&Mk+)\3Mkf(M),
(3.10
EY obs 2
P(x)~exp( B 7( ) ) (3.9 wherea;; = (Syoikojk) ~ 1. One can rewrite the equations as

two first-order equations
We have for the susceptibility,

‘o -1
v TobszobSdtd t L6 Mi—bi(M,t)+7\aij g] s (31])
X TobJO 0 X(OX(s)) 36 with the forceg(t) obeying the equation
Tobs . ﬂbi
:zvjo dt(x(t)x(0)) (3.7 gi=—gjm+aMif. (3.12
J

for a time-translationally-invariant steady state. For a simple We consider the simple case ofealarfield M and drift
exponential decax(t) =x(0)exp(t/7) (away from critical b(M,t), and additive noise witla=1, as in our example
pointg we have that system discussed in Sec. IV. Thus we have
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M=b(M,t)+\g (3.13 where the complex responseAM (1) =AM (1) +iAM,(t).

' ’ The fluctuation response can then be simply written as
g=—gayb(M,t)+ oy f. 3.1 =
9=~ 9ub(M. 1)+ (314 Qu(©)=(M(@)~(M(w)|H=R(w),  (3.24
Now let us consider the fluctuation of the following quantity

. . . wher
for large, but finite, observation timg,, ere

- AM (g(w)+AM, (@

1 (Tobs . R(w)=— lim 1r(©) 21(0) (3.29
M(w)==— dtexp(i wt)M(t). (3.19 N A
Tobs) 0 -
AMgr(w) [AM4(w)] are the cosft) [sin(wt)] transform
[i.e., Eqs.(3.16),(3.17] of AM(t) [AM(t)], respectively.

1 (Tobs Note that we have scaled out the factor of the noise strength
MR(w)=T—J dtcog wt)M(t), (3.16& and averaging time in Eq3.24. Otherwise the relation

obs/ 0 should readfrom the LD formula(2.9)]

We define the real and imaginary componentddfw) as

62

1 TO S
M|(w)=ﬁjo “dtsin(wt)M(1). (3.17 QM(w)=T—§(w)~%ﬁ(w), (3.26
o obs obs

In order to realize the fluctuations of the real and imaginarywhere for macroscopic systemg~ 1NV (V is the system
components  operationally, we  denote forf size).
=cost)M(t)[sin(wt)M(t)], the corresponding perturbing  The fluctuation-response relation requires one to apply a
forces ash1g41(t) [A205(1)]. force g(t) that, in general, is a function of the steady state
The fluctuation-response relation is realized once we reM,(t). The (experimental determination ofg(t) was dis-
gard the forceng(t) as the external force we experimentally cussed and demonstrated[#]. First, we must determink’
impose to the system to realize the fluctuatioleviation. by observing the natural relaxation of the system to the
The linear response about the steady Jidémoted ad/ly(t), steady state. Next, we must solve E8114) [linearized about
whereM(t)=b(M,(t),t)] is the response of the system in Mo(t)] for g(t). Here we note that since E¢3.14) is un-
the limit A— 0. In this limit, one may linearize the equations Stable(because of the negative sign in the linear tgrthe
to obtain for the forces best method to computg(t) is to solve the(stablg time-
reversed equation
g1(t)=—b"(Mq(1),1)g:1(t) + cog wt), (3.18 .
9’ ()=b"(Mo(—1t),=)g" —dn -y f (Mo(—1), — 1),
g2(t)=—b"(Mo(1),)g2(t) +sin(wt),  (3.19 (3:27

whereb’ = gb/dM,. From the definition of\ as the “con- Whereg’=g(—t), and then time reverse the steady state
jugate” force in Egs.(2.10 and (2.11), we have that the solution back to obtaim(t).

susceptibilities ((Mg()—(Mg(w))1?), ((M,(w) The above prescription allows one to compute the gener-
—<|\/||((,0)>:|2>7 are given by the linear responses alized fluctuational entropy funCtIdI’(M R(w),M|(w)) at the
quadratic level,
2 . AMR(w) 2 2
([Mg(®) = (Mg(@))])=x,=— lim | ——— , (Mg, M,)=M2(0)/2x,+ MZ(0)12xg+Mg(0)M(w)/x.
A;—0 1 A,=0 (3.28
(3.20
The_susceptibilities,MR,X,_are dete@ined asy|rR=
My ()~ (My (@)= xa= — lim | 20() (= X*+ x1x2) X2, andy=(x*~ xax2)/x- The quantityy
' ! Yool A g is the response function
=
(329 — AMp(e)  AMy(e)
. L ) x=-—lim———=—-lim————.  (3.29
The subscript on the quantity is to remind us that the N A roo A

response is compute@perationally by perturbing the sys-

tem with forcesg,(t) [g,(t) absent, i.e.x,=0] or g,(t) The relation between the two sets of susceptibilifesd Eq.

(N=0). (3.29] follows from the Legendre transform and integrabil-
Since the equations governing the response are linear, wy conditions of the rate functioh.

may use the superposition principle and consider the system The generalized fluctuation-response relati@?24 is

response to oné&omplex forceg(t)=g,+1igs, constructed from the starting point of capturing the fluctua-
) tions of time-averaged quantities €0), and then general-
g(t)=—b'"(My(t),t)g(t) +coq wt) +i sin(wt), izing to nonzerow, whereas the usual equilibrium FDT be-

(3.22 gins with the single-time simultaneous correlations-0,
_ Jdw), and then generalizes to the cases with time delay
AM(t)=b'(My(t),t)AM +rg(t), (3.23 (consequently, to nonzew). For steady states that are time-
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translationally invariant, the single-time fluctuation can be .

$Qo., |
obtained from our response theory, by using the relation QQQ

([M(t=0)—<M>]2)=J doR(w). (3.30 o
100 - [} i
This means that the forcing term in the linear equation for @
the perturbing forceg(t) becomesfdw|cost)+i sin(wt)] ®oq
=4(t). Thus, for single-time fluctuations, the forcgt) is %@@@%@@
obtained via the equation )

g(t)=—b"(Mo(t))g(t)+ (t=0), (3.3)
b) h=0.9
which, as discussed [@], must be solved fromh= — o up to
t=0, with g(t)=0 for t>0.

IV. EXAMPLE SYSTEM AND RESULTS

Fluctuation spectrum
o

A. Model system

As an illustration of the generalized fluctuation-response Peeee®®e
relation, we consider, as an example, a simple model of ¢ oo TR !
magnetic spin system under the influence of a time- L L
dependent magnetic fie[&]. The system was modeled phe- &

nomenologically using a time-dependent Ginzburg-Landau  *° oh=1 -
equation for the dynamics of the spatially coarse-grained *® ox

magnetization. We study the model at the mean-field level, 2
but with a small noisémore realistically, the total magneti- % ® 2
zation of a small magnetic particle under constant tempera: : B pan®

ture condition. The model takes the following form: o

®$®®®®$®$®®& mmmmm

M (t)=— yo[ — oM (t) + ugM3(t) — hocog wot) ]+ e (1), ‘
(4.2 0.0 0.5 1.0 1.5 20 25 3.0 35 40
Where the fieldM (t) der_mtes théspace-averag'ednagne.ti- FIG. 1. The fluctuation spectrum as a functioneofor various
zation, h(t) =hocos(wt) is the external magnetic fieldo is  field h values, atr=1, andw,=1. The star symbols denote the
a positive constanty, is the kinetic coefficient, ant is the linear response daf&R(w)], the circle symbols denote the empiri-

temperature parametgproportional to T.—T) with Tc be- ¢4 data obtained from a numerical simulation of E4.2) with
ing the unrenormalized critical temperatureTifis close to €=0.01Tps= 207/ w0y .

T.; constant ifT is sufficiently away fromT.]. In the fol-
lowing we rescale the fiel# and time to express the dy- ables in the steady state becomes flat at the tranditien
namics in terms of the minimal set of parameters,the fluctuations of time-averaged quantities become large
r=royolwg, h=ho(Ugyd wd) 2 e— e(Ugyo/wd)V? (diverge near the transitioh
M=rM —M3+h cogt)+ en(t). 4.2) B. Results
The fluctuation spectrum was computed for various field
In the zero noise limit, the steady states of the system ark values at a generic point=1 (whereh,~0.93), using the
periodic in frequencyw,. The system undergoes a phaseresponse method discussed above. Along with the linear re-
transition at a critical fieldh,(r) from a zero time-averaged sponse data, we also show some data obtained empirically
magnetization phaseZ(phase to a nonzero time-averaged from a numerical simulation of the stochastic equatiér®)
magnetization phas@NZ phasg. The transition between the with e=0.01, and an averaging tinTg,s= 10 (in units of the
Z and the NZ phases is eontinuoustransition. Forr<O0  period of the external magnetic field72w,). The empirical
(i.e., T>T.) there is only theZ phase. data are shown to illustrate that the zero-noise data obtained
Although we study the system at the mean-field level, wefrom the linear response method are reasonably robust to
expect that in the actual spatially extended systee, in-  small noise.
cluding spatial fluctuationsthere will be a true phase tran-  The quantityQ(w) for a typical parameter point in the
sition from a NZ to aZ phase. It is in this sense that we use NZ phase(away from the transition regigris shown in Fig.
the term “phase transition” for the mean-field systémm2). 1(a). One sees a Lorentzian-type shape centered around
However, it should be noted that if one studies the systenw=0, with a well-defined characteristic time scate(de-
along the time axis, there is a phase transition for the mearfined as the inverse half-width7 is a measure of the time
field system(4.2) in the sense that the generalized potentialcorrelation, or relaxation time, of the steady state. Character-
[4] that describes the fluctuations of time-averaged obsenistic of a typical second-order phase transition, the quantity
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[along with thew =0 peak, i.e., the susceptibility of the long M '

time-averaged quantiti =(1/T,,d fdtM(t)], diverges as T h=0.8
h—h.~0.93. In Fig. 1a), =1 (in units of the period of the o
external magnetic field 2/ wg). Note that, in principle, the ®e ]
averaging timeT ,, for the empirical data should be larger 50 © o 1
than 7. This is to ensure that one is properly sampling an g ]
ensemblef time averages. In practice, the averaging time of *
10 periods is sufficient, if we are not too close to the transi- 00 s . *
tion_ 80.0 T T
As the fieldh is increased closer to the transitiginom
the NZ phasg peaks develop in the fluctuation spectrum at
thew=nwy (N=1,2,...),wherew, is the frequency of the
external oscillating magnetic field. The cdse 0.9 is shown
in Fig. 1(b), where, as expected, the=0 peak increases and
the width of thew=0 peak decreasdshere is still a well-
defined peak atv=0 (not shown in the figurewith 7=~5.
The peaks ahwg grow to a maximum at the transition. The ood N . - ‘
strongest peaksn(=0,2) do seem to diverge ds—h, (the 40 , :
peaks at the higher harmonics are much smaller in)size
Above the transition l{>h.), the odd harmonics disappear
quite abruptly; the peaks at the even harmonics ® h=1.
(n=2,4, .. .)persist above the transition, but eventually dis-
appearsee Fig. Ic), for h=1]. 20| ® ,
The empirical data illustrate that these features near the & ®
transition are reasonably robust to the effect of nonzero ® a0 ® 4
noise. Above the transition, the data from the system with *®®®®®®®
noise show the same trend, except that the noise tends to * ®,
reduce the peaks at the even harmonics, to the extent that the 4,4 s . l l $2e00
narrow peaks become dips. We note here that from the scal- 0.0 03 1.0 13 20 23 30
ing of the noise strengthe®~ 1/w8, see above Eq4.2)],
one expects the small noise theory to become even more FIG. 2. The two componentQy (w) (star symbol and
accurate for larges, (the regime of larget is actually of ~ Qu () (circle symbo) of the fluctuation spectrum, obtained with
more intrinsic interest, since for large, the system cannot the linear response methdgfbr r=1,0,=1.)
locally equilibrate over the time scale of the external field,
and thus is further away from local equilibrigm and
Shneidmaret al.[15] have studied the small noise behav-
ior of Qy(w) for thia system analytically, starting from a QM,(w):<[M|(w)—<M|(w)>]2>= (4.4)
two-state rate equation with an approximate form for the
transition probability. They observed peaks in theenhar- . . :
monics in ?he smallynoise llmit, for freqFl)Jencies much smaller’'2 th_e linear responss.20), (3.21). An example is shown
than the one used in Fig. 1. It is interesting that some of th Fig. 2. The two components are tha sanee.,
above features have been observefilif], since the regime Qup(@) ~Qu, (@)[=0], except at the harmonicsv, [and
they studied is quite different from that studied in this paperat (n+ 1/2)wg in the NZ phasg where one component dips,
Near the transition, the system has excitable modes at th&nd the other peakisvhich component peaks or dips varies
harmonics, which is essentially a reflection of the discretévith h andn). Similar behavior is seen close to the transi-
time symmetry of the system, i.e., the symmetry of the systion, except very close th., where both components show
tem is reflected on the response. One expects that close to tgaks at the harmonics. The empirical dataai.01 show
phase transition, the system becomes more susceptible kgsically the same behavior.
perturbations that are periodic it,. The peaks observed in ~ An interesting finding is the nonzero nature of
the spectrum are simply due to large periodic driving. TheS¢QMR(w)—QM,(w)| at o=(n+ 3)wy (N=1,2,...) in the
peaks are not related to the phenomenon of stochastic resgz phase(it is zero in theZ phasg. The difference between

nance, which is a synchronization of the noise-induced hopge two components seems to decrease smoothly to zero at
ping with the external oscillating fiel@he stochastic reso- e transition. Thus  the quantity |Qy ()
nance would presumably only be observable in our small R

noise system for sufficiently smaib, and h<r, i.e., well =~ Qu (@)lu=(n+172)0, (for n=0 in particulay is a good in-

h=0.9

Fluctuation spectrum
P
=3
<
T
&
®
®
Il

away from the transition region dicator of the phase transition from NZ to tl@ephase. As
The fluctuation-response method also allows one to comMentioned in Sec. IV A, the typicdlisua) order parameter
pute, separately, the two componentsQyf(): that characterizes the phase diagram for the periodic steady

, states is the time-averaged magnetizatidr=M (w=0).
Qug(@) ={[Mr(@) = (Mg(@))]%), 43 Here we see that the phase transitijd =0 (Z phaseg
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—M=#0 (NZ phasg] is reflected in the response function response method to give only qualitatively correct data very
|Qu (@) = Qu ()] w—(1127,- The periodic symmetry with ~close to the phase transition. _
frequencyw, of the response functiofQy (@) —Qu ()] The ﬂl_Jctuann—re_sponse .relatlon has be_en (.alu0|d.ated for
, , ) 'R 0 small noise Langevin equations. The relation is of interest
is broken in the NZ phase; thlere is a period doublirg, the for physical systems that are driven away from local equilib-
response becomes nonzerozaty). rium (modeled at the mesoscopic lexdFor nonequilibrium
Langevin models, the noise strength is an unknown param-
V. DISCUSSION eter in the theory. For our simple model systénl), the

We have discussed and illustrated the computation of thcal equilibrium assumptiotin the limit ofzsmall o and
wp) allows us to make the identificatior™= 2y kgT/V,

fluctuation spectrum for a nonequilibrium steady-state sys* ; S
tem via a linear-response method. The method gives an eff?here T is the equilibrium temperature, arig the Boltz-
cient and operational means to compute the fluctuation of thg1ann constant. Away from Iocall equilibrium, such a relation
amplitude spectrum for nontrivial steady states. The quantity> Invalid. However, the fluctuation-response relati@2§
can give more insight into the dynamics of the system tharf"&y b€ used to define the noise strength for systems outside
the power spectrum, but it is not easy to observe without thef Iocal_equmbnum, if the e)gperlm_entallst can determlne the
use of the fluctuation-response relation discussed in this paluctuation spectrunQy(w) in an independent fashiofby
per. As an illustration a periodically driven bistable system,SOMe scattering experimentor perhaps one computes
or driven magnetic systertthat should be experimentally Qw() directly from a more microscopic model. To deter-
realizabl@, has been considered. mine the force coupling, and henBéw), one needs to know
The system was shown to display, in addition to the usuab’ (i.e., the dynamical model must be given experimentally
peak atw=0, narrow peaks at the harmonics of the externalor theoretically. This is analogous to knowing the model or
driving frequency near the transition point. The peaks at the&ffective Hamiltonian for an equilibrium system. Tken-
even harmonics seem to be more domin@aimely, the sec-  stantratio T, Qu(®)/R(w) would then be a measure of the
ond harmoniy, and persist somewhat longer in tAephase. noise strengttfor generalized temperatyre
In the NZ phase, well below the transition, the spectrum has Finally, the example system considered in this paper is a
a Lorentzian-type shape aroumg=0. Interesting behavior one-degree-of-freedom Langevin equation. As can be seen
has also been observed in the fluctuation spectrum of twérom Eq. (3.12 in Sec. Ill B, the structure of the response
componentsMg(w) andM,(w); in particular, a symmetry theory is basically the same for the case of multivariable
breaking (for h<h;) reflected in the response function dynamics. It should be noted that a difference arises for the
|Q,\,,R(w)—QMI(w)|w:(n+1,2)w0 has been observed. case of a nondiagonal noise matrix. Such cases remain to be
So long as the perturbation is sméille., linear regimg studied further. In particular, it would be interesting to con-
the framework should be valid even if one is very close to sSider as a future work a two-component system, where the
phase transition. If there is a disagreement, it is simply thafluctuation spectrum aroun@ay a limit cycle can be stud-
the app“ed perturbation is too |arge_ Of course, gent|e periEd from the linear response method discussed in this paper.
turbation is required near a critical point. However, it should
be noted that the Iinear—res_ponge_method _is_ strictly co_nfined ACKNOWLEDGMENTS
to systems in the small noise limit— 0. Critical behavior
near a phase transition invalidates the small noise limit. The author would like to acknowledge support from Na-
Thus, in an actual systefexperiment, we would expect the tional Science Foundation Grant No. NSF-DMR-93-14938.
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